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Abstract

In this report a hybrid algorithm for model reference adaptive control of

single-input single output systems is presented. The control structure involves

a continuous time as well as a discrete time part, instead of being all discrete

or all continuous as in previous approaches. The system is sampled periodically

at a frequency F, and a bound F* is determined such that the closed loop

system is stable whenever F > F*.
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Introduction

The theory and application of Adaptive Control System have been a

center of discussion in the last few years. Continuous-time [1), [6], [7],

[8], as well as discrete-time [2), [5), [9), [10) schemes have been devised,

and stability has been proved.

In spite of the continuous-time nature of real systems, from a point of

view of applications, discrete-time algorithms are preferred to continuous-

time, due to recent advances in digital technology.

However, the discrete approach is not closely coupled to the continuous-

time behavior.of real plants, making a "hybrid" approach (partly discrete,

partly continuous) desirable. It is a well known result [1], [6), that, for

a given plant, poles and zeroes can be arbitrarily placed with appropriate

compensators as in Fig. 1. If the plant parameters are known exactly, then

the control input which gives the desired behavior is on the form

u u(t) -K

.(t) being filtered versions of the plant input and output, and K* an array

of constants. In case of plant unknown, or partially known, the input

assumes the form

u(t) - K(t) P(t),

where K(t) are adapted in order to have K(t) * K*.

In the hybrid scheme which will be the subject of this paper, the set'of

parameters _(t) are updated by a digital computer at discrete intervals of

time {tk}, and the continuous-time nature of u(t) is preserved.

The overall scheme of the control system is shown in Fig. 2.

Recently, hybrid algorithm for adaptive control [4] as well as self-

tuning regulators [11], have been devised. In [4] the adaptive gains 1(t)

L |
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are discretely updated at a fixed rate, in base of samples taken from the

plant in a random fashion.

It turns out that the sampling scheme is crucial in order to establish

stability of the closed loop system.

In many practical applications bounds on the parameters of the plant

are known, what enables us to determine a suitable sampling frequency which

guarantees stability.

The problem is stated in Section 1, with the error model given in

Section 2. The adaptive law is as in Section 3, and the variable and fixed

rate sampling schemes are discussed in Sections 4, 5, and 6.

m -
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Notati.o'n

The following notation will be used:

- vectors: a a [a,, a2, ..., an]T;

- time delay operator: z;

- differential operator: p d

- x(t) - O[y(t)] 1ff there exists a positive constant M such that

Ix(t)l ._ MIy(t)l, for any t;

- x(t) - oEy(t)) 1ff jx(t)l o(t)ly(t)l for some function M(t) such

that (t) * o0;

x(t) - y(t) iff x(t) - O[y(t)] and y(t) - O[x(t)];

- z denotes Laplace Transform operation.

1. Statement of the Problem

A continuous time dynamic system (plant) can be described by the

linear line invariant, non-autonomous differential equation

F.(1.1) Op(p) x(t) - Du(p) u(t)

with Dp(p) - pn + alp-I + ... + an

Du(p) a bopm + blpm-1 + ... + bm

The following assumptions are made on the plant parameters:

(1) the values of a , i - 1, ..., n and bi, 1-0, m, are unknown;

(ii) m -c n-1 is known;

(iii) the plant is minimum phase; i.e., the polynomial Du(D) is Hurwitz;

(iv) the sign of bo is known, as are bounds bor and bdq, where

b oM !bo > bom.

Without loss of generality, b. 0 will be assumed.



Given a model
(1.2) Om(p) xm(t) -Kor(t)

with Dm(n) - pn + amlpn-l + ... + amn, Hurwiltz.

The design objective is to determine an input to the plant u(t) such that,

for some Eo > 0, tF > 0

.1.3) Ie(t)I :< Eo , for every t > t F

where
(1.3) e(t) 4 xm(t) - x~t)

In particular we restrict the input u(t) to be on the form

(1.4) u(t) - i Ki(k)*i(t), for teltk,tk+l)

where KI(k), i=l,n, is a set of gains updated only at discrete instants {tk}.

and *i(t) are continuous time, observable state variables of the system.

2. The Error Model

It has been shown in [l that constant vectors pu and §x exist such that

(2.1) Dtm(p)e(t) - DW(p)[-bouf(t) + .uT (t) + T (t) + Kale(t)]

where the following definitions pertain:

. Ow(p) 4 pn-l + clpn-2 + ... + c is a Hurwitz polynomial such that

Dw(P) is Strictly Positive Real (S.P.R.);

- uf(t) is such that Df(p)uf(t) - u(t) where Df(P) n 1n-l +

Flpn--2 + + Fnm l is any Hurwitz polynomial of degree n-,-1;

- ul(t), I 0 0, ..., n-2 are solutions of Dw(p)Df(p)#Ul(t) a piu(t);

- #x(t), I 0 , ..., n-I are solutions of Dw(p)Df(p)#xi(t) a pix(t);

- *o(t) is solution of Dw(p)#o(t) * r(t).

Jf we choose Dm(p) * (p+a)Dw(p)s with a 0, a sequence {tk}, and
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(2.2) uf(t) Ku . (k)JU(t) + T( k)4(t) + K0,(k)# Mt + W~)

for tc[tkstk+1),

we can write (2.1) as

(.) (p+a)e(t) - a (k)ju(t) + 6 T(k).(t) + 60(k)#0(t) bw-)

for tcetkltk+l)

where .j (k) 4 Ej(k) - b j * u x o.

In what follows the sequences Kj(k) will be called the Adaptive Gains, and

will be updated'at the sampling instants {tkl only. Furthermore the input

u(t) has to be determined such that (1.3) is satisfied.

If (2.3) is sampled-at instants' {tkl, .the samples of the error are

related by the linear, time variant difference equation

(2.4 ekk -1ketk) + --uT(k-)(k) + 'xT(k-l)#(k) +

+ 60(k-l)-*0(k) - b0~l(k)

where we define

Tk atk -tk-1;

A a exp -dzTk;

(2.5) ij(k) Lj(tk) - Akl Wtk-013 O,u,X;.

(p+a) Li(t) J -() O'u'X;

k-

-- P) fk- x -a-----;---. -
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Introducing the auxiliary network

(2.6) y(k) aAky(k-l) + q(k) + w(k)

with n(k) A= e(tk) + y(k), equations (2.4)'and (2.6) yield

(2.7) ri(k) aAkn(k-l) + .T(k.1) j(k) + w(k) - w(k) + q(k)

where

T(k)- [6T) (k) 80 ,(k)J

(2.8) j(k) Aju (kTo~

Let us choose

(2.9) w(k) =Kw(k-1);i(k)9

then (2.7) becomes

(2.10) ii(k) - Ak(k-1) + a (k.1) i(k) + 6w(kl1);i(k) + k*

which is the augmented error equation.

3. Adaptive Law

The equations in the previous section hold for any sampling sequence

(tk}, on which no hypothesis has been made so far.

If we suppose (tk) be a sequence with an infinite number of elements,

then it Is a well known result--E2J, [3J--that equation (2.10) and the following

adaptive law

j() (k-l) - F j(k) n(k)

(3.1) q(k) _-Y I ti(k)Hj2 n(k)

8(k) a w(k-l) + -L- i(k) ntk)

with F - diag { I - 1,),- 1 /2 min (xi, xw). Xi. Aw > 0, yield {6(k)} be

a uni forinly bounded sequence, and moreover
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(3.2) lim n(k) -0

(3.3) 1rn j(k) n(k) 0
k-i.

Let us define the control Input as

(3.4) u(t) = KT(k) t(t), t tk, tk+l)

where

(3.5) t(t) 4 Df(n-m-1) (t);

equations (3.4) and (2.2) then yield

(3.6) w1(t) - uf(t) - KT(k) #(t), t € Etk, tk+l),

which, together with (2.5), gives the remaining input to the auxiliary network

(3.7) ;1(k) - Uf(k) - KT(k-I) j(k)

(3.8) Gf(k) tk exp -m(tk-T) uf( ) dT,,

tk.1

4. Stabil1ty and Sampl1ng Scheme

A suitable choice of the sampling sequence {tk} is crucial to prove stability

of the closed loop system. It is evident, in fact, from (3.1) that if the

output of the plant grows without bound in an oscillating fashion, we might

choose {tk) such that n(k) a 0 for every k, and the gains never be updated.

A sufficient requirement on the samoling sequence can be stated as follows:

Theorem 4.1. Let the sampling sequence {tk) have an infinite number of terms,

and be such that

(4.1) sup Ie(s)j 1o sup I e(tn) I N
sStk nsk

for soe constants No > 0, and M1 0 0. Then the hybrid system described in

the previous sections is uniformly stable and

(4.2) lim e(tk) -.

k o
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In fact, equations (1.3), (2.4), (2.7) yield

(4.3) X(tk) = Ak X(tk.1) + Ko. 1o(k) - n(k) + Akn(k-1)

-T
+ Kw(k-1) w1(k) - y j (k) j.(k) n(k)

Since the model is stable, driven by a bounded input, condition (4.1) on {tk}

implies

(4.4) sup jx(s)l s sup ie(s)! + M2 s M0 sup Je(tn)i + M3-9

s S tk s < tk  n < k

z M. SuP iX(tn)j + M4
ns k

for some M44 a 0.

Combining (4.4) with the results obtained in Appendix A, which yield

01(k) - o[sup Ix(s)l]
S s tk

II.(k)ll = o(sup jx(s)J],
s 5<tk

we obtain
! (4.5) il(k) - O[SU p (X(tn)J]

ns k

IIj(k)II l O[supx(tn)I]n~ k

If we take equations (3.2), (3.3), (4.5) into account, we can write (4.3)

In the form

(4.6) x(tk) - Akx(tk-1) + o(k) sup Ix(tn)t + a1(k)

for some sequence a., o1 such that 1rm 80(k) - 0 and o1(k) uniformly bounded.

It Is easy to see that (4.6) implies uniform boundedness of the sequence

fx(tk)}. Using this result in (4.4) we.conalude that the plant output x(.)

is uniformly bounded, which proves the first part of the Theorem.

i _ _ _ _
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In order to prove (4.2) notice that, by equations (4.5), {((k)} and

{;(k)) are uniformly bounded sequences. This fact together with equations

(3.1), (3.2), (2.6) implies that for the augmenting network

lim y(k) = 0
k-)-

and (4.2) follows from being e(tk) = n(k) - y(k).

QED

The central idea contained in Theorem 4.1 is that stability of the overall

system is guaranteed if the sampled error {e(tk)} grows at the same rate as

the continuous time error itself.

In particular, for a fixed rate samplinq scheme we define
A

(4.7) tk - kT, for k = 0, 1, 2, ...

where T has to be determined in order to guarantee stability of the closed

loop system.

In Section 5 it is shown that a suitable sampling frequency F* can be

computed from the knowledge available on the bounds of the plant parameters,

and the adaptive control system is stable if tk is as in (4.7) with T < I
F*

Before going into the details of the two schemes mentioned above, some

preliminary results, which will be used throughout the paper, need to be proved.

From the definition of the problem in Section 2, it turns out that the

(2n-l) order polynomial

(4.7) bo(s+al) ... (s + a2n.1) ! Dm(s)Df(S)Dn(S)

is Hurwitz. Define X and'p to be such that

(4.8) P > Jail, for i - 1, ..., 2n-l

0 < X < Re J.

L _ _ _ _ _ _ _ _ _ _ _ _
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Then the following can be proved:

Lem 4.1 For x and p as in (4.8) the following Inequalities hold

(4.9) 14'(t)i _. (" + !), sup lx(?)I, for 1 0, .... n-i.x.2n-m-2

(4.10) 1 t lk su Q ln~~ p 'Ikjnk + 8( t I bol x2n-2 0klankB(; + 8)k suP t4x)I

for J " 0, ..., n-2,

where ai, I - 0, 1, ... , n-I and b. are coefficients of the plant transfer

function as in (1.1).

Proof. By the definitions in Section 2 we can write xas

(4.11) #xi(t) f t hxt (t-.r) x(c)d?, t - 0, ... , n-I
0

where
• - - st

x * z- [ Dw(s)Df (s ]

Application of the results in Appendix B yields (4.9).

To prove (4.10) notice that #u can be written as

FtO 4.1-

II ___-___

I
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(4.12) (t)L a ik n C~) 1*0,.. n-2

where we define

(4.13) (t f */ h .. (t-T) X(T) dT

0

hk 1 5k

F- [ 0(s)Dw(s)Df(s)

Appendix B, (4.12) and (4.13) yield (4.10).

QED

Lemma 4.2 For the Hybrid Control System discussed in Sections 2 and 3,

constants F* > 0 and MI:- 0 exist such that, for some o(-) with o(t) *0,

(4.14) Ie(tHj [ F* + 0(t)]sup Ie('r)I +M

where e is the output error between the model and the plant.

Proof. Equation (2.3), leumma 4.1 and Appendix A imply that

(4.15) I;(t)l I e(t)I + M0 rIA§(kHIl sup Ix(-r)I +

+ O(t) sup Ix(T)I, t C [tk. tk~l)

for some Mo > 0, and 0(-) such that lii 0(t) a 0.
tIM

Boundedness of the sequence (I(k)), as seen in Section 3, and of the model

output, make (4.14) to follow from (4.15).

QED
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S. Existence and Determination of a Minimum Sampling Frequency

Throughout this section, bounds on the values of the constants 6 , Ox]

I.ntroduced In equation (2.1) are supposed to be available. In particular, we

_know constantsOj " j g such that

(5.1.) 10 Bj ,9 for , 0 0,1, ... 2n-2.

b0

This enables us to determine an updating.law which takes (5.1) into

account, and to compute a minimum sampling frequency F* which makes uniformly

stable the Hybrid Adaptive Control System defined in Sections 2 and 3.

Lema 5.1. Let {tk) be an infinite sequence. Then equation (2.10) and the

adaptive law given by

M , if K (k-1) + Aj(k) _ m.

(5.2) K (k) , if K (k-1) + A (k) < ej

K3 (k- ) + Aj(k) ,otherwise

j = 0, 1, ... , 2n-2,

q(k) 2 -,I(k(k) I 2  2(k)

aw(k) a w(kW) +.-- ;1lklk).

with

A3 (k) !I 1 (kn(k)

j(k) n [10 (3.3....

yields (3.2) and (3.3).



-Proof. By (5.2) we can express KY(k) as 14

(5.3) K (k) K,(k-l) + Aj(k) + F,(k),

for some Fj(k) such that

(5.4) .(k.) £(k) 0 for every k,

FT(k) ! [Fo(k), ..., F2nZ(k)].

Let us choose as a candidate Lyapunov function

(5.5) V(k) - ),I 11(k,112l + +6w(k)2 + nk.

Then (5.3), (2.10), and 8(k) _. bo K(k) yield

1 2 2
'(5.6) (k) -V(k-1) -(2yf - .'1i±(k)I n (k)X

(2-fr .- __i)I;(k)t22 (k)

- [nZ2(k) - Akn(k)n(k-1) + q (k-1)]

bo x ILF(k)fl2 - 2boXC(k-l) - 1j(k)(k)

- boF(k)] (k)

The last term in square brackets is 1(k); then from (5.4) we conclude that

v(k) - v(k-1) < 0 for every k. This yields v(.) < a, and the lema is proved.

QED

The existence of a minimum sampling rate F* which guarantees stability of

the closed loop system for the Hybrid MRAC discussed in the previous sections,

is stated by the following:

Lemma 5.2. Let the sampling sequence be on the form

'(5.7) tk - kT, k 0, 1,.

for some constant T > 0.

Then a value T* exists such that the Hybrid MRAC described in Sections

2 and 3 Is uniformly stable for T < T*, and

(5.8) l1m (tk) - 0
: kIn*



Proof. Suppose that the continuous time error e(-) grows without bounds.

Then an infinite sequence of time {Cjl exists such that

(5.9) Ie(Cj)I a sup Ie(T)I

0 <Ie(&j)I < !e(gj+i)I, i z o, 1.

Let us define a sequence {kj} of integer values such that

(5.10) (kj-1 )T < -C < kjT, i a 0, 1,

First we.can prove that positive constants M5 and M6 exist such that

(511 e(gjQI < M5 Ie(k iT)I + M~6, j - 0, 1, 2,

when T < ,with F* as in Leimma 4.4.

In fact, suppose (5.11) does not hold; then a sequence O(j), such that

lrn O(J) a 0, exists for which

(5.12) je(kjT)Ij 6 (j) l~,I

Since the error e(-) is a continuous function of time--the plant and the

model being strictly proper and the adaptive gains uniformly bounded--by

Lagrange theorem instants Tj C C k iT) exist such that

(5.13) Ij~I e(C) - e(k iT)I 9 is ..

Substituting (5.12) into (5.13) we obtain

(5.14) .I;(TjQl t~ _1_-______ e
IT

By the fact that 00i) * 0O and > F*, an index N exists such that,T

for J > N,

19( ) > ~l(C~l * up R(~T

77~~~~ 'C -- -------
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But this contradicts Lemma 4.2, and then proves that (5.11) Is true.

Finally, equation (5.11) and Theorem 4.1 prove the Lemma.

QED

The knowledge available on the plant parameter enables us to determine

a suitable value for the sampling frequency F*, as shown in the following

Theorem 5.1. Under the conditions of Lemma 5.2, the overall system is uniformly

stable and (5.8) holds, if T -<.I , withF*

(5.15) F* a max [ II. kn-2abe l L~n '  !an-k (+ I~ 2(X + pJ

I ba I I.

.2n-n- 2  0 ., )

A

where I_ " max 16J1, and X, 9 as In (4.8).

Proof.' Using the result of the previous lemma, we have to show that F* given

by (5.15) satisfies inequality (4.14) of Lemma 4.2.

From equation (2.3) and Appendix A we can write

(5.16) l;(t)l Iml5(t)l + 11ull.llu(t)II.

+ II .Illi(t)ll. + 1011, 0(t)l + O(t) sup Ix(T)l,

where lim O(t) - 0.
V..

Application of the results in lemma 4.1 to inequality (5.16), yields

(5.17) le(t) .1 [F* + 0(t)] sup Ix(T)l + 1I1 sup I4o(?)i
T <t T <C

+ V,(t)

with 1tm v(t) - 0.
t4
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Finally. being Ix(t)lI ' e(t)I + M where sup jXm(Tr)l, (5.17) yields

(5.18) Ie(t) I [F* + s(t)] sup Ie(-r)I + F* XM+ 1801 SUP 1+ (T)I

+ M

which implies that F* as in (5.15) satisfies inequality (4.14).

QED

77 ,9
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Conclusions

An algortthm for hybrid adaptive control of single-input single-output

systems has been presented. The parameters of the controller are updated

periodically by a digital computer, and the continuous time nature of the

closed loop system is preserved.

A bound F* on the sampling frequency F has been computed in base of

the information available on the plant, and uniform stability is shown

for F > F*.
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Appendix A

Lema. wl(k) uOte" Tk sup Ix(s)tJ

s I tk

with x as in (4.8).

In fact, equations (3.4), (3.6) yield

(A.1) Df(P>,, (t . ET~k)Dfi,-m-l),LC)-DfC,-m-1)_KT~k) _t). t, e tk, tk+l)

Using the identity, (1),

(A.2) .Df(p) KT(k) j(t) = KT(k) Df(p) j(t) +

n-m-2
+ oi Df(i)(pKT(k)(Pn-m' 2--i(t))

where we define

(A.3) Df(o) a 1; Df(l) - p + F1; ...

Df(n-ow2) - pn-m-2 + Fln-t-3 + +.. +Fnm2

and considering that, for t c [tk, tk+1)

(A.4) p_(k) - [K(k) - K(k-1)] 6(t-tk)

with 6(t) the Dyrac function, equation (A.1) can be written as

n-m-2(A.5) Df(P)wl(t) " Iit Df(i)[AKT(kl a(t-tkllpn"2tt) ,

0

The polynomial Df(n-m-l) being arbitrary, it is not restrictive to choote

with real zeroes, i.e.

(A.6) Df(p) - (p + 0i) ... (P + On.m-).

M .. . " . .
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Parti at fraction expansion Yl~eids,

(A.7) Df(l) n-rn-I 51
-

-.Z
D f(n-m-1) 1 P'IOj

and (A.5) becomes
n-rn-i

(A.9) (p+oj) wJ(t) -aKT(k) 01inE11()6ttk

for t [tt tk ).

Solution of (A.9) leads to

(A.10) wli(t) - K I (hT)EQ,(n-rn-2)±t(t)J th e-j(t-tn)
0 h

where t [~.t t )anid

(A.11) Q (n-r-2) I j P
01

* Defini.tion. (2.5), and'equatlion 'CA.Sg* mply that

(A.12) ;1(k) J nrni

where tk

tk-.

-tk 
-g~

e -$J(tkl-th,)
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The following facts hold:

a) AKMk -1 0,

b) the elements of the vector Q (n-m-2) I are strictly proper, linear

transformation of x, and u,

c) the plant is minimum phase then, as shown in [7J;

Iu(t)I - 0 [sup IX( )IJ.

Facts a), b), c) imply that

IiJ(k)I e-OjTk e (oj-a)Tk-1 I (k) sup ix(T)l
I~T~t ttk

o~e- XTk sup xT1,*

with x as in (4.8).

QED
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Appendix B

Let D(s) *(S + 3)S+ 02) ... (s + m.) be a Hurwitz polynomial, and

let x,p Pr R be such that

(1) Re [ >1  x 0, for i - 1, 2, .... n

P >la

the following can be proved:

Lemmna. For every pair of functions x,y: R -~R

related by the linear transformation

0

where

(3) hk(.) s 0 < k <n,

the inequality

(4) jy(t)jj (, + P) sup lx('r)I

holds for every t > 0.

Proof. Let us defineJ

for 1 .1, 2, .. ,n and 0j< J i.
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First notice that
(6) IZi 0 t)l < t!1lt) = ti"1 • "x; t .

( S +

This can be seen from figure B.1 according to the followihf considerations.

Let.Yo: R s R+ be any non-negative valued function. Proceeding by induction

we can show that

(7) i1(t) I 1Y1(t)I, for every t g A

In fact

(8) 1 YM11f )061 _ e'lt")y o(T)dT < f e-XltT) YolT)d - lT )

0 0

which proves (7) for I - 1. Suppose (7) Is true for <j - 1; then If

is real we obtain

(9) tYi(t)li t eJ 1'( Y 1 T) d - t f x(t--))

0

b46 '-
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and if = is complex we obtain

(9,) JIti 1_ ft (t-T)e-Re*mj(t-- ) Yj_,(T)Id, " !jjt)

0

which proves (7). Finally, using definitions (5), inequality (7) implies

(10) f Iz i(t-)IYo() dT < Z (t-') YO () dr

for every non-negative valued function Yo, and then (6) follows directly.

In order to prove (4) notice that the following recursion

(11) Z1 k = Z + Gi+ Zi+ 1  , 0 < k c i

holds from the fact that
si sJ (s+Ci~l)

(s+0 1 )... (s+a i ) • (s+*,I) ... (s+mi ) (s~aj+l)

This enables us to write

(12) Jl<12 f +i Ojzii.4I i+l I+

where p is as in (1).

Using definitions (2), (3) and (5) we can write

(13) fY(t)f 1. qk sup x(r)fn r<t

where we define

j

(14) q I ()ldr , for o < < i,
0 Is 2s .... n.

In particular, by inequalities (6) and (12) the following recursion holds

-: . - . . . ." - . . . .. , :.;.;:j -: ,: __ _ __-- . ., _. .. ,_. ._,,_ ,
. .. .. -llll .... . . . . . . . 1 "* "
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(15) qj3 l -< +p

(16) O< < ,(r)d -_

0

By induction we can prove that inequalities (15) and (16) yield

(17) qJ< (x+

In fact, for j = 0 and every i - 1, 2, ..., n (17) is proved by (16).

Furthermore, by (15) and (17) we obtain

3+1 aJ ( )j (

qJ+1 -- + p + +P = )J+l

x'i Xki+l Xi+1

which proves (17).

Finally by (14), (13) and (17) the Lema is proved.

QED
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